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Foreword

This Volume 22A, Fundamentals of Modeling for Metals Processing, represents an expansion of the
Handbook series in response to the expressed needs of members of the modeling and simulation
community.

ASM International is indebted to the Co-Editors, David Furrer and S. Lee Semiatin, who had the
vision for a comprehensive presentation of modeling of metals processing. They moved this vision
from inception to this unified collection of content in a remarkably short time, through tireless effort.
They recruited world renowned modeling experts who contributed entirely new content. We are like-
wise indebted to the approximately 120 volunteer authors and reviewers who fulfilled their commit-
ments, squeezing this time intensive activity into their lives busy with family, career, and
community commitments.

While this Handbook serves as an organizing vehicle for acquiring modeling knowledge, ASM
International is pleased to have the means to disseminate this outstanding source of information in
forms most attractive and most readily available to its members and to the technical community.

Modeling is an important aspect of “everything material.” One can model at the submicroscopic
scale where atomic structure is predominant; at an intermediate, or mesoscale at which grain size/grain
structure effects are important; and at the macroscopic, continuum level at which bulk properties are
typically determined. Through ASM’s strategic content development efforts, specific needs for high-
quality materials modeling information are met. Further enhancement will be forthcoming as the
Co-Editors complement this work with Volume 22B, Metals Process Simulation.

The need for modeling metallurgical behavior during processing has long been recognized and ASM
has been a forum for exchange of these ideas. Through mechanistic and phenomenological approaches,
solidification and deformation processes can be optimized, the resulting mechanical properties con-
trolled, and defects minimized. As computing power has increased and its cost decreased, more sophis-
ticated simulation of metallurgical processes has enabled material scientists and engineers to maintain
competitive advantage over those not willing or able to change.

As an organization of material scientists and engineers, ASM International is pleased to offer this
content to practitioners and students of modeling as they continue their exciting journey of tailoring
materials and processes to meet future functional needs. This new Handbook, in its printed and elec-
tronic forms, also moves us closer to achieving a strategic objective that will shape our society for
the next fifty years: to accumulate, review, and distribute comprehensive materials information and
to become the global resource for quality materials information.

Roger Fabian
President
ASM International

Stanley C. Theobald
Managing Director
ASM International
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Preface

Scientists and engineers have always been curious about cause and effect
relationships within nature. This is also the case relative to metals and mate-
rials. The understanding of the physics of metals has greatly increased from
the earliest days of the field of metallurgy. The discovery of mechanisms
that influence and control the behavior of metals has spurred continued
research and further discovery. Initial understanding and description of
controlling mechanisms were substantially phenomenological, based on
observations and perceived interactions of material and process variables
on resultant metallic material microstructure, mechanical properties and
behavior. The conversion of mechanistic relationships into mathematical
expressions is now the field of materials modeling.

The development of models and modeling methods is now allowing
more rapid discovery of new alloy systems with greater optimization and
application potential. Models are being integrated into computational tools
for design and simulation of component processing and manufacture. The
successful application of models by industry is also resulting in further pull
for even further development of models that are more accurate and predic-
tive. The study of mechanisms that control the evolution and behavior of
metallic materials is continuing today at an even more aggressive pace.

Mechanistic models that more accurately describe the physics of met-
allurgical processes, such as grain growth, precipitation, phase equlibria,
strength and deformation as examples are of great interest and impor-
tance to science and industry alike. Greater understanding of the physics
of metals to the atomistic level, along with increased computational
power, has resulted in further discovery and growth in the field of mod-
eling and simulation.

This Handbook provides a review of the models that support the under-
standing of metallic materials and their processing. An accompanying
volume will provide details of the integration of these models into soft-
ware tools to allow simulation of manufacturing processes. The distinctly
different, but complementary fields of Modeling and Simulation are
providing new and increased capabilities for metallic materials for com-
ponents and systems. The future of the metals industry is moving toward
an integrated computational materials engineering (ICME) approach as a
result of the hard work and dedication of the individuals, teams and orga-
nizations that have and continue to provide the needed models and simu-
lation tools that are capable of providing engineers with accurate
predictive guidance and direction.

D.U. Furrer, FASM
Roll-Royce Corporation

S.L. Semiatin, FASM
Air Force Research Laboratory
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Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has
adopted the practice of publishing data in both metric and customary
U.S. units of measure. In preparing this Handbook, the editors have
attempted to present data in metric units based primarily on Systeme
International d’Unités (SI), with secondary mention of the corresponding
values in customary U.S. units. The decision to use SI as the primary sys-
tem of units was based on the aforementioned resolution of the Board of
Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables
are presented in Sl-based units with the customary U.S. equivalents in
parentheses (text) or adjoining columns (tables). For example, pressure,
stress, and strength are shown both in SI units, which are pascals (Pa)
with a suitable prefix, and in customary U.S. units, which are pounds
per square inch (psi). To save space, large values of psi have been con-
verted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric
tonne (kg x 10%) has sometimes been shown in megagrams (Mg). Some
strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on art-
work. References in the accompanying text to data in the illustrations are
presented in both SI-based and customary U.S. units. On graphs and
charts, grids corresponding to SI-based units usually appear along the left
and bottom edges. Where appropriate, corresponding customary U.S.
units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing
group may be given in only the units used in that specification or in dual
units, depending on the nature of the data. For example, the typical yield
strength of steel sheet made to a specification written in customary U.S.

vi

units would be presented in dual units, but the sheet thickness specified
in that specification might be presented only in inches.

Data obtained according to standardized test methods for which the
standard recommends a particular system of units are presented in the
units of that system. Wherever feasible, equivalent units are also pre-
sented. Some statistical data may also be presented in only the original
units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/
ASTM SI-10, with attention given to the number of significant digits in
the original data. For example, an annealing temperature of 1570 °F con-
tains three significant digits. In this case, the equivalent temperature
would be given as 855 °C; the exact conversion to 854.44 °C would
not be appropriate. For an invariant physical phenomenon that occurs at
a precise temperature (such as the melting of pure silver), it would be
appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some
instances (especially in tables and data compilations), temperature values
in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several
exceptions to strict conformance to IEEE/ASTM SI-10; in each instance,
the exception has been made in an effort to improve the clarity of the
Handbook. The most notable exception is the use of g/cm® rather than
kg/m® as the unit of measure for density (mass per unit volume).

SI practice requires that only one virgule (diagonal) appear in units
formed by combination of several basic units. Therefore, all of the units
preceding the virgule are in the numerator and all units following the vir-
gule are in the denominator of the expression; no parentheses are required
to prevent ambiguity.
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