# Medical Device Materials IV

Proceedings of the Materials and Processes for Medical Devices Conference 2007 September 23–25, 2007 Palm Desert, California, USA

> *Edited by* Dr. Jeremy Gilbert

> > Sponsored by



ASM International® Materials Park, OH 44073-0002 www.asminternational.org

### Copyright © 2008 by ASM International<sup>®</sup> All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the copyright owner.

First printing, November 2008

Great care is taken in the compilation and production of this book, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.

#### ISBN-13: 978-0-87170-861-8 ISBN: 0-87170-861-2 SAN: 204-7586

ASM International<sup>®</sup> Materials Park, OH 44073-0002 www.asminternational.org

#### Printed in the United States of America

Multiple copy reprints of individual articles are available from Technical Department, ASM International.

### PREFACE

This publication, *Materials and Processes for Medical Devices*, is a compilation of research that was presented at the ASM International sponsored conference of the same name held in Palm Desert, California, September 23–25, 2007.

This was the 4<sup>th</sup> MPMD conference presented by ASM to focus on the materials used in medical devices. This conference brought the perspectives of industrial, academic, national laboratory and clinical researchers together, seeking to develop and/or understand materials for medical devices. This focus on real applications, real devices and real materials issues for medical devices, has set ASM International apart from other materials organizations in the realm of biomaterials. The focus areas of this conference, including processing, structure and properties of biomaterials, surfaces of biomaterials, degradation, wear, fracture and fatigue, etc., are all critical elements of any medical device design and will continue to be the focus of research into new technologies and materials.

The ongoing success and growth of this conference and others where ASM is focused on medical materials demonstrates the importance of providing venues for interactions among industrial device designers, clinicians, academic translational researchers and others to promote and advance the development of new medical devices, technologies, and biomaterials.

ASM International, with the MPMD conference and its newly established materials database for medical devices, has now clearly established itself as a significant force in the biomaterials and medical devices arena. Going forward the MPMD conference will continue to offer THE place for learning about and contributing to materials for medical devices.

I would like to thank the organizing committee for their diligent and dedicated assistance in promoting and developing this conference and in preparing this publication. I would also like to thank ASM staff for doing an outstanding job at all stages of this process in assisting and coordinating the conference and these proceedings. This conference was a success, in part, because of the sponsors and their efforts, and because of all of the contributors who presented their work. It is my firm belief that the MPMD conference will see many more successes into the future as we continue to focus on medical devices and the materials from which they are made.

Dr. Jeremy Gilbert

Chair, MPMD Organizing Committee Professor, Associate Dean for Research and Doctoral Programs, L.C. Smith College of Engineering and Computer Science

# CONTENTS

### **Fabrication Processes**

| Multiple Step Transformation in NiTi Alloy                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) Heraeus Materials SA, Penthalaz, Switzerland                                                                                                       |
| (2) University of Applied Sciences of Western Switzerland, Sion, Switzerland                                                                           |
| (2) On voisity of Applied Sciences of Western Switzerland, Ston, Switzerland                                                                           |
| Biomimetic Multiphasic Calcium Phosphates to                                                                                                           |
| Enhance Bone Regeneration                                                                                                                              |
| R.A. Ayers <sup>1</sup> , J.J. Moore <sup>1</sup> , D.E. Burkes <sup>2</sup>                                                                           |
| (1) Colorado School of Mines, Golden, CO, USA                                                                                                          |
| (2) Idaho National Laboratory, Idaho Falls, ID, USA                                                                                                    |
| Powder Metallurgical Production, Mechanical and Biomedical Properties of                                                                               |
| Porous NiTi Shape Memory Alloys14                                                                                                                      |
| M. Köhl <sup>1</sup> , M. Bram <sup>1</sup> , H.P. Buchkremer <sup>1</sup> , D. Stöver <sup>1</sup> , T. Habijan <sup>2</sup> , M. Köller <sup>2</sup> |
| (1) Forschungszentrum Jülich GmbH, Jülich, Germany                                                                                                     |
| (2) Universitätsklinik Bergmannsheil, Bochum, Germany                                                                                                  |
| Modification and Characterization of Blended Nanofiber Substrates as                                                                                   |
|                                                                                                                                                        |
| Skin Grafts for the Capture of Bone Marrow-Derived Hematopoietic Stem Cells                                                                            |
| K. Ma, K.C. Chan, S. Ramakrishna<br>National University of Singapore, Singapore                                                                        |
| National University of Singapore, Singapore                                                                                                            |
| Batch Fabrication of Complex, Pre-Assembled, Miniature Medical Devices                                                                                 |
| A. Cohen, M. Wu, C. Folk, R. Chen, J. Lue                                                                                                              |
| Microfabrica Inc., Van Nuys, CA, USA                                                                                                                   |
|                                                                                                                                                        |
| Microstructure Evolution of Ceramic to Noble Metal Braze Joint                                                                                         |
| A. Antalfy, G. Jiang                                                                                                                                   |
| Alfred Mann Foundation, Valencia, CA, USA                                                                                                              |
|                                                                                                                                                        |
| Laser Micro-Welding (LMW) of Crossed 316LVM Stainless Steel Wire                                                                                       |
| I. Khan, Y. Zhou                                                                                                                                       |
| University of Waterloo, Canada                                                                                                                         |
| Alloy Powders for Medical Applications                                                                                                                 |
| P. Davies, M. Kearns                                                                                                                                   |
| Sandvik Osprey Ltd, Neath, United Kingdom                                                                                                              |
|                                                                                                                                                        |

| Qualification of Electron Beam Melted (EBM)<br>Ti6Al4V-ELI for Orthopaedic Applications                                        | 48 |
|--------------------------------------------------------------------------------------------------------------------------------|----|
| A. Christensen <sup>1</sup> , R. Kircher <sup>1</sup> , A. Lippincott <sup>2</sup>                                             |    |
| (1) Medical Modeling LLC, Golden, CO, USA                                                                                      |    |
| (2) Engineering Consulting Services, Prior Lake, MN, USA                                                                       |    |
| Cryogenic Machining of Polymeric Biomaterials:<br>An Intraocular Lens Case Study                                               |    |
| R. Ghosh <sup>1</sup> , J.A. Knopf <sup>1</sup> , D.J. Gibson <sup>1</sup> , T. Mebrahtu <sup>1</sup> , G. Currie <sup>2</sup> | тт |
| (1) Air Products and Chemicals, Inc., Allentown, PA, USA                                                                       |    |
| (2) Tekia Corporation, Irvine, CA, USA                                                                                         |    |
| Tube Drawing Process Modelling by a Finite Element Analysis                                                                    | 65 |
| M. Palengat <sup>1</sup> , O. Guiraud <sup>1</sup> , C. Millet <sup>1</sup> , G. Chagnon <sup>2</sup> , D. Favier <sup>2</sup> |    |
| (1) Minitubes, Grenoble, France                                                                                                |    |
|                                                                                                                                |    |

(2) Universités de Grenoble, Grenoble, France

# **Fatigue Life**

| An Examination of Total Fatigue Life and Life Variability in                                                              |     |
|---------------------------------------------------------------------------------------------------------------------------|-----|
| Fine Medical Grade Wire                                                                                                   | .73 |
| J.E. Schaffer                                                                                                             |     |
| Fort Wayne Metals Research Products Corporation, Fort Wayne, IN, USA                                                      |     |
| High-Cycle Fatigue Evaluation of Two Beta-Rich Titanium Casting Alloys                                                    | .82 |
| A. Craft, D. Campbell, B. Aboud                                                                                           |     |
| DePuy Orthopaedics, Inc., Warsaw, IN, USA                                                                                 |     |
| The Fatigue Behavior of Different Nitinol Stent Tubes Characterized by                                                    |     |
| Micro Dog-Bone Testing                                                                                                    | .88 |
| G. Siekmeyer, M. Hientzsch, U. Bayer, A. Schuessler                                                                       |     |
| Admedes Schuessler GmbH, Pforzheim, Germany                                                                               |     |
| A Comprehensive Protocol and Procedural Considerations Designed to                                                        |     |
| Evaluate the Shedding of Particles from Drug Eluting Stents                                                               | .94 |
| J. Conti <sup>1</sup> , E. Strope <sup>2</sup> , R. Ramesh <sup>2</sup> , C. Conti <sup>2</sup> , A. Watkins <sup>2</sup> |     |
| (1) Missouri State University, Springfield, MO, USA                                                                       |     |
| (2) Dynatek Dalta Scientific Instruments, Galena, MO, USA                                                                 |     |
|                                                                                                                           |     |
|                                                                                                                           |     |

# **Regulatory Affairs Related to Materials**

| <b>GR&amp;R: Understanding Sources</b> | of Error in Mechanical Testing Results |  |
|----------------------------------------|----------------------------------------|--|
| M. Viveiros, J. Ritchey                | _                                      |  |
| Instron, Norwood, MA, USA              |                                        |  |

vi

# Materials Research and Development

| Properties Characterization of Cast Ti-Al-Cu Alloys for Dental Applications109                                          |
|-------------------------------------------------------------------------------------------------------------------------|
| M. Koike, T. Okabe                                                                                                      |
| Baylor College of Dentistry, Dallas, TX, USA                                                                            |
|                                                                                                                         |
| The Effects of Cold Work and Heat Treatment on the                                                                      |
| Properties of Nitinol Wire114                                                                                           |
| M. Drexel <sup>1</sup> , G. Selvaduray <sup>2</sup> , A. Pelton <sup>3</sup>                                            |
| (1) ConfirMD, San Carlos, CA, USA                                                                                       |
| (2) San Jose State University, San Jose, CA, USA                                                                        |
| (3) Nitinol Devices and Components, Fremont, CA, USA                                                                    |
| Crystallography Texture and Mechanical Properties of MP35N Wire120                                                      |
| B.Q. Li, T. Steigauf                                                                                                    |
| Medtronic, Minneapolis, MN, USA                                                                                         |
| Wedubile, Winneapons, Witt, USA                                                                                         |
| The Potential of Titanium–Tantalum Alloys for Implantable Medical Devices124                                            |
| S. Abkowitz <sup>1</sup> , S.M. Abkowitz <sup>1</sup> , H. Fisher <sup>1</sup> , S.M. Allen <sup>2</sup>                |
| (1) Dynamet Technology, Inc, Burlington, MA, USA                                                                        |
| (2) Massachusetts Institute of Technology, Cambridge, MA, USA                                                           |
|                                                                                                                         |
| Effect of Small Change in Chemical Composition of TNTZ Used in                                                          |
| Biomedical Applications on Its Superelastic Behavior                                                                    |
| M. Niinomi <sup>1</sup> , T. Akahori <sup>1</sup> , M. Nakai <sup>1</sup> , N. Kawakita <sup>2</sup>                    |
| (1) Tohoku University, Japan                                                                                            |
| (2) Toyohashi University, Japan                                                                                         |
| MDI Garder of These Marriel Dalla Brance Daniel Allance 120                                                             |
| MRI Study of Three Novel Palladium Based Alloys                                                                         |
| J.M. Carlson <sup>1</sup> , E. Smith <sup>2</sup> (1) Carlson <sup>2</sup> , Blacking Di USA                            |
| <ul><li>(1) Cook Inc., Bloomington, IN, USA</li><li>(2) Deringer Ney Corporation, Bloomfield, CT, USA</li></ul>         |
| (2) Derniger Ney Corporation, Bioonineid, C1, USA                                                                       |
| <b>Evaluation of Free Radicals at Various Thermal Treatment Temperatures142</b>                                         |
| M. Peiserich, A. Rufner, R. Gsell, D. Pletcher, H. Brinkerhuff, M. Hawkins                                              |
| Zimmer, Inc., Warsaw, IN, USA                                                                                           |
|                                                                                                                         |
| Fabrication and Characterization of Nanofluidics Device Using                                                           |
| Fused Silica for Single Protein Molecule Detection                                                                      |
| X. Li <sup>1</sup> , W. Hofmeister <sup>1</sup> , G. Shen <sup>1</sup> , L. Davis <sup>1</sup> , C. Daniel <sup>2</sup> |
| (1) University of Tennessee Space Institute, Tullahoma, TN, USA                                                         |
| (2) Oak Ridge National Laboratory, Oak Ridge, TN, USA                                                                   |
|                                                                                                                         |
| Custom 465® Offers Significant Advantages over                                                                          |
| Other Precipitation-Hardened and Austenitic Stainless Steels for                                                        |
| Cutting and Shaping Instruments                                                                                         |
| K.S. Downing <sup>1</sup> , J.W. Vance <sup>1</sup> , R.S. Brown <sup>2</sup>                                           |
| (1) Veridiam Medical, El Cajon, CA, USA                                                                                 |
| (2) RSB Alloy Applications, LLC, Leesport, PA, USA                                                                      |

# Surface Engineering

| Electrochemical Properties and Application Stability of Coatings for<br>Cardiac Pacing and Neuromodulation Devices |
|--------------------------------------------------------------------------------------------------------------------|
| Plasma Mediated Collagen-Coating of Medical Implant Materials to         Improve Biocompatibility                  |
| Fatigue Performance Improvement of Ti-6Al-4V Femoral Hip Stems via         Low Plasticity Burnishing (LPB)         |
| <ul> <li>Wear Resistance of Titanium Boride Coated Titanium Alloy against Alumina</li></ul>                        |
| Increase of Wettability and Biocompatibility of Metal Implants by<br>Low-Pressure Plasma Treatment                 |
| How Does Silica Grit-Blasting Affect Ti6Al4V Alloy Mineralization in a<br>Rat Bone Marrow Cell Culture System?     |
| Effect of Microblasting on Surface Characteristics and Cytotoxicity of NiTi                                        |
| Challenges in Achieving Surface Texture in Titanium Surface Hardened with<br>Titanium Boride Layers                |
| New Surface Treatment to Reduce Alumina Coverage of Grit-Blasted Implants                                          |

| <b>The Osseointegration of Porous Materials Using a Rabbit Femoral Defect Model203</b><br>C. Ngo, G. Kulesha, R. Zhang<br>Stryker Orthopaedics, Mahwah, NJ, USA |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Corrosion                                                                                                                                                       |
| Electrochemical Behavior of Cobalt-Chromium Alloys207<br>B.G. Pound<br>Exponent, Menlo Park, California, USA                                                    |
| Corrosion of Nano-Hydroxyapatite Coating on Titanium Alloy<br>Fabricated by Electrophoretic Deposition                                                          |
| Behavior of Nitric Acid and Citric Acid Based Passivation Formulations for         Depyrogenation                                                               |
| Corrosion Testing of Nitinol Implants per ASTM F 2129 –<br>Understanding Corrosion and Interpretation of Test Results                                           |
| <b>Advanced Materials</b>                                                                                                                                       |
| <ul> <li>Annuloplasty Band with Shape Memory Alloy Stiffener</li></ul>                                                                                          |
| Design and Development of Metal – Polymer Film Systems for<br>Flexible Electrodes Used in Cortical Mapping                                                      |
| <ul> <li>Medical Device Applications of Dielectric Elastomer-<br/>Based Artificial Muscles for MPMD 2007, Palm Desert, California</li></ul>                     |
| Author Index249                                                                                                                                                 |



**ASM International** is the society for materials engineers and scientists, a worldwide network dedicated to advancing industry, technology, and applications of metals and materials.

ASM International, Materials Park, Ohio, USA www.asminternational.org

This publication is copyright © ASM International<sup>®</sup>. All rights reserved.

| Publication title           | Product code |
|-----------------------------|--------------|
| Medical Device Materials IV | 05219Z       |

### To order products from ASM International:

| Online    | Visit www.asminternational.org/bookstore                                                                                                                                                                               |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Telephone | 1-800-336-5152 (US) or 1-440-338-5151 (Outside US)                                                                                                                                                                     |
| Fax       | 1-440-338-4634                                                                                                                                                                                                         |
| Mail      | Customer Service, ASM International<br>9639 Kinsman Rd, Materials Park, Ohio 44073, USA                                                                                                                                |
| Email     | Cust-Srv@asminternational.org                                                                                                                                                                                          |
| In Europe | American Technical Publishers Ltd.<br>27-29 Knowl Piece, Wilbury Way, Hitchin Hertfordshire SG4 0SX, United<br>Kingdom<br>Telephone: 01462 437933 (account holders), 01462 431525 (credit card)<br>www.ameritech.co.uk |
| In Japan  | Neutrino Inc.<br>Takahashi Bldg., 44-3 Fuda 1-chome, Chofu-Shi, Tokyo 182 Japan<br>Telephone: 81 (0) 424 84 5550                                                                                                       |

**Terms of Use.** This publication is being made available in PDF format as a benefit to members and customers of ASM International. You may download and print a copy of this publication for your personal use only. Other use and distribution is prohibited without the express written permission of ASM International.

No warranties, express or implied, including, without limitation, warranties of merchantability or fitness for a particular purpose, are given in connection with this publication. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this publication shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this publication shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.