Medical Device Materials V

Proceedings from the Materials & Processes for Medical Devices Conference 2009

August 10–12, 2009

Minneapolis, MN, USA

Edited by Dr. Jeremy Gilbert

Sponsored by

ASM International®
Materials Park, OH 44073-0002
www.asminternational.org

Copyright © 2010 by ASM International ® All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the copyright owner.

First printing, May 2010

Great care is taken in the compilation and production of this book, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.

ISBN-13: 978-1-61503-039-2 ISBN-10: 1-61503-039-5 SAN: 204-7586

ASM International[®]
Materials Park, OH 44073-0002
www.asminternational.org

Printed in the United States of America

Multiple copy reprints of individual articles are available from Technical Department, ASM International.

PREFACE

This publication, *Materials and Processes for Medical Devices*, is a compilation of research that was presented at the ASM International sponsored conference of the same name held in Minneapolis, Minnesota, August 10–12, 2009.

This was the 5th MPMD conference presented by ASM to focus on the materials used in medical devices. This conference brought the perspectives of industrial, academic, national laboratory and clinical researchers together, seeking to develop and/or understand materials for medical devices. This focus on real applications, real devices and real materials issues for medical devices has set ASM International apart from other materials organizations in the realm of biomaterials. The focus areas of this conference, including processing, structure and properties of biomaterials, surfaces of biomaterials, degradation, wear, fracture and fatigue, etc., are all critical elements of any medical device design and will continue to be the focus of research into new technologies and materials.

ASM has now established itself as a venue for learning about research on medical materials used in actual medical devices and the complex interactions at play between device materials and the biological environment. There are outstanding papers focused on fabrication, fatigue, corrosion, tissue biocompatibility, cell-surface interactions, regulatory issues, shape memory alloys and a host of other cutting edge efforts. This proceeding will provide the academic translational researcher, the industrial researcher and the regulatory scientist with state-of-the-art understanding in medical device material performance and the advancement of new technologies associated with the manufacture and use of medical devices.

I would like to thank the organizing committee for their diligent and dedicated assistance in promoting and developing this conference and in preparing this publication. I would also like to thank ASM staff for doing an outstanding job at all stages of this process in assisting and coordinating the conference and these proceedings. This conference was a success, in part, because of the sponsors and their efforts, and because of all of the contributors who presented their work. It is my firm belief that the MPMD conference will see many more successes into the future as we continue to focus on medical devices and the materials from which they are made.

Dr. Jeremy Gilbert
Chair, MPMD Organizing Committee
Professor, Department of Biomedical and Chemical Engineering
L.C. Smith College of Engineering and Computer Science
Syracuse Biomaterials Institute
Syracuse University

CONTENTS

Biostability and Biocompatibility of Medical Devices

Cytotoxicity Assessment of Corrosion Products of Nitinol Alloys	3
Inhibiting Microbial Biofilm Formation by Brominated Furanones	6
Corrosion, Fatigue and Durability of Medical Devices	
Characterization of 'As-Received' Nickel – Titanium Alloy Wire by	
Cyclic Potentiodynamic Polarization	13
R.J. Pylkki, M.J. Koval; Aspen Research Corporation, Saint Paul, MN, USA	
Can a Critical Breakdown Potential be Established for	
Electrochemical Corrosion Testing of Medical Devices	40
According to ASTM F2129?	19
B. Choules, J. Metcalf, J. Merk; MED Institute Inc., West Lafayette, IN, USA	
The Effects of Heat Treatment, Surface Condition and Strain on	
Nickel-Leaching Rates and Corrosion Performance in Nitinol Wires	23
The Effect of Surface Abrasion on the Polarization Behavior of	
CoCr, Ti-6Al-4V and 316L SS in PBS at pH 7 and 2	30
J.L. Gilbert, B. Lam; Syracuse University, Syracuse, NY, USA	
Improving the Reliability of Medical Devices Coatings	35
(1) Exponent Failure Analysis Associates, Menlo Park, CA, USA	
(2) Emory & Henry College, Emory, VA, USA	

Ultrasonic Cleaning-Induced Failures in Medical Devices
Application of Electrochemical Impedance Spectroscopy for Implants with Sputtered Iridium Oxide Coatings
Electrochemical Characteristics of Titanium and Its Alloys in Phosphate Buffer Saline
Titanium Oxide Layer on the Surface of Anodized Dental Implants
Materials Research and Development
An Introduction to a New Family of Palladium Based Medical Alloys
Characterization of Mechanical Properties and Microstructure of a Biomedical Magnesium-Calcium Alloy
Strength and Fatigue Improvement of Metastable Beta Titanium Alloys by Boron Additions and Equal Channel Angular Extrusion
Improvement in Fatigue Strength of Ti-29Nb-13Ta-4.6Zr Alloy while Maintaining Low Modulus for Biomedical Applications M. Nakai ^l , M. Niinomi ^l , T. Akahori ^l , H. Tsutsumi ^l , T. Oneda ^l , M. Ogawa ² ; (1) Tohoku University, Sendai, Japan (2) Daido Steel Co., Ltd., Nagoya, Japan
Investigation of Alternate Materials for Apertures in Proton Therapy90 F.M. Sciammarella, B. Nichols; Northern Illinois University, DeKalb, IL, USA
A Comparison of Pd-Ir Alloys to Pt-Ir Alloys94 R. Dickenson; Accellent, Salem, VA, USA

Active Biomaterials	100
A. Lendlein, M. Behl;	
GKSS Research Centre Geesthacht, Teltow, Germany	
Catheter and Specialty Needle Alloys	105
E. Keehan, V. Gergely;	
Creganna, Galway, Ireland	
Texture and Microstructure of Ag Core MP35N Wire with NDR Process	111
Effect of Materials on Treatment & Surgical Techniques	
Evaluation of Biodegradable Adjunctive Therapy for	
Extremity Wound Infection Reduction	117
J. Jennings ¹ , S. Noel ¹ , B. Reves ¹ , K. Smith ¹ , S. Jackson ¹ , J. Bumgardner ¹ , W. Haggard ¹ , H. Courtney ² , J. Wenke ³ ;	
(1) University of Memphis, Department of Biomedical Engineering, Memphis, Tennessee, USA	
(2) University of Tennessee Health Sciences Center, Memphis, Tennessee, USA	
(3) US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA	
Outcomes in the Treatment of Benign Bone Lesions Using an	
Engineered Bioceramic: Preclinical and Clinical Results	123
S. Gitelis, R.M. Urban, T.M. Turner, R. Heck, A.D. Parameswaran;	
Rush University Medical Center, Chicago, IL, USA	
Mechanical Properties of a Sintered Asymmetric Particle Ingrowth Coating	129
L. Gilmour, B. Jones, J. Dickinson;	
Smith and Nephew Inc., Memphis, TN, USA	
Clinical Consequences of CoCr Wear Products in the Hip	132
P. Campbell, K. Takamura, A. Battenberg, E. Ebramzadeh, S. Nelson;	
UCLA Orthopaedic Hospital, Los Angeles, CA, USA	
Materials Modeling	
Effects of Wire Contact Conditions on the Bending and	
Torsion Behaviors of Metal Wire Braids	141
R. He, P. Zhou, H. Zhang, J. Uschold;	
Boston Scientific Corporation, Minneapolis, MN, USA	

Poster Session

Fabrication of Nano-Gap Electrodes and Nano-Wires by Using Electrochemical and Chemical Etching Technique for a
Nano-Pore DNA/RNA Sequencer147
J. Sutanto ¹ , R.L. Smith ² , S.D. Collins ² ;
(1) Genesis BioTechnology, Chandler, AZ, USA,
(2) University of Maine, Orono, ME, USA
Influence of Silicon Carbide Layers on the Mechanical Behavior of
Silicon-Alloyed Isotropic Pyrolytic Carbon
Medtronic CardioVascular, Minneapolis, MN, USA
Oxygen Plasma Treatment on Adhesion Improvement of
Au Deposited on Pa-c Substrates
(1) Kwangwoon University, Korea
(2) Korea Institute of Science and Technology, Korea
Bioactive/Biomimetric Surface
Towards Bioactive Titanium Maxillofacial Implants163
R.A. Omar, L.D. Silvio, M. Ditta, F. Festy, R.V. Curtis;
King's College London, London, UK
Developing Cell Selectivities of Acrylonitrile Based Copolymers and
Porous Bodies from Poly(ether imide)169
K. Luetzow, A.T. Neffe, A. Lendlein
GKSS Research Center Geesthacht GmbH, Teltow, Germany
Luer Tip Roughness and Texture to Prevent Breakage in Critical Applications175 A.C. Farinella, D.F. Vincenti, M. Bowen;
BD, Franklin Lakes, NJ, USA
Cellular Response to Anodic and Cathodic Surface Voltage and
Metal Ion Release in Polarized CoCr Biomedical Alloy
Syracuse University, Syracuse, NY, USA
Fabrication Processes for Medical Devices
Titanium Alloys Manufactured with Electron Beam Melting Mechanical and
Chemical Properties189
M. Svensson, U. Ackelid;
Arcam AB, Mölndal, Sweden

LASER Deposited Engineered Surfaces for Orthopedic Implants for
Increased Device Longevity
(1) South Dakota School of Mines and Technology, Rapid City, SD, USA
(2) University of South Dakota, Vermillion, SD, USA
Machining of Stent-Like Geometries in Thin NiTi Sheets Using Water Jet Cutting201
M. Frotscher ¹ , H. Gugel ¹ , K. Neuking ¹ , W. Theisen ¹ , G. Eggeler ¹ , F. Kahleyβ ² , D. Biermann ² ;
(1) Ruhr-Universität Bochum, Bochum, Germany
(2) Technische Universität Dortmund, Dortmund, Germany
Micro-Resistance Spot Welding of 55.8wt% Ni-Ti Crossed Wires207
B. Tam, M.I. Khan, Y. Zhou;
University of Waterloo, Waterloo, ON, Canada
Effects of Welding Parameters on the Mechanical Performance of
Laser Welded Nitinol210
M.I. Khan, Y. Zhou;
University of Waterloo, Waterloo, ON, Canada
Numerical Modeling and Simulation of High Speed Machining
Biomedical Magnesium Calcium Alloy214
M. Salahshoor, Y.B. Guo;
The University of Alabama, Tuscaloosa, AL, USA
Effect of Low Plasticity Burnishing on Fatigue Strength of Spinal Rods220
J. Disegi ¹ , C. Sax ² ;
(1) Synthes, West Chester, PA, USA(2) Swiss Federal Institute of Technology, Zurich, Switzerland
(2) Swiss Federal Institute of Teenhology, Zarten, Switzerland
Materials Research and Development/Fabrication
Combustion Synthesis of CoCr, NiTi Intermetallic and
Calcium Phosphate Ceramic Biomaterials227
R. Ayers, M. Karsh, N. Vollmer, N. Hannigan, J. Moore;
Colorado School of Mines, Golden, CO, USA
Thermomechanical Treatment of Thin NiTi Filaments for
Textile Applications by Electric Current232
J. Pilch, L. Heller, P. Sittner; Institute of Physics of the ASCR, Prague, Czech Republic
histitute of Fhysics of the ASCK, Frague, Czech Republic
Nitinol
Shape Deceyowy Effects of Solid Found Nitinal for Outhouselis Applications 241
Shape Recovery Effects of Solid, Forged Nitinol for Orthopedic Applications241 M. Fonte, A. Saigal;
Tufts University, Medford, MA, USA

The Stress-Induced R-phase Transition in Nitinol and Its Impact on Applications S. Zhang; Ev3 Inc., Plymouth, MN, USA	248
Regulatory Affairs Related to Materials	
Overview of China's Medical Device Market and	
Government Regulatory Agencies Y. Liu ¹ , M. Pecht ² ; (1) Medtronic, Inc., Mounds View, MN, USA (2) University of Maryland, College Park, MD, USA	257
Nanotechnology	
Emerging Applications for Nano-Engineered Surfaces in Medical Devices	265
Author Index	271

ASM International is the society for materials engineers and scientists, a worldwide network dedicated to advancing industry, technology, and applications of metals and materials.

ASM International, Materials Park, Ohio, USA www.asminternational.org

This publication is copyright © ASM International[®]. All rights reserved.

Publication title	Product code
Medical Device Materials V	#05299G

To order products from ASM International:

Online Visit www.asminternational.org/bookstore

Telephone 1-800-336-5152 (US) or 1-440-338-5151 (Outside US)

Fax 1-440-338-4634

Mail Member Service Center, ASM International

9639 Kinsman Rd, Materials Park, Ohio 44073-0002, USA

Email MemberServiceCenter@asminternational.org

American Technical Publishers Ltd.

27-29 Knowl Piece, Wilbury Way, Hitchin Hertfordshire SG4 0SX,

In Europe United Kingdom

Telephone: 01462 437933 (account holders), 01462 431525 (credit card)

www.ameritech.co.uk

Neutrino Inc.

In Japan Takahashi Bldg., 44-3 Fuda 1-chome, Chofu-Shi, Tokyo 182 Japan

Telephone: 81 (0) 424 84 5550

Terms of Use. This publication is being made available in PDF format as a benefit to members and customers of ASM International. You may download and print a copy of this publication for your personal use only. Other use and distribution is prohibited without the express written permission of ASM International.

No warranties, express or implied, including, without limitation, warranties of merchantability or fitness for a particular purpose, are given in connection with this publication. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this publication shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this publication shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.