Heat Treating

Including

Advances in Surface Engineering: An International Symposium in Honor of Professor Tom Bell

and

Professor Jerome B. Cohen Memorial Symposium on Residual Stresses in the Heat Treatment Industry

Proceedings of the 20th Conference

9–12 October 2000 St. Louis, Missouri

> Edited by Kiyoshi Funatani George E. Totten

An Affiliate Society of ASM International

ASM International® Materials Park, OH 44073-0002 www.asminternational.org

Copyright © 2000 by ASM International[®] All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the copyright owner.

First printing, February 2001

Great care is taken in the compilation and production of this book, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.

ISBN: 0-87170-727-6 SAN: 204-7586

ASM International[®] Materials Park, OH 44073-0002 www.asminternational.org

Printed in the United States of America

International Organizing Committee

Prof. Diran Apelian Worcester Polytechnic Institute Worcester, Massachusetts

Prof. Michail S. Blanter Moscow State Academy of Industrial Engineering and Information Science Moscow, Russia

Prof. Haydn Chen University of Illinois Urbana, Illinois

Ms. Chandni Dattamajumdar Hi TecMetal Group, Inc. Cleveland, Ohio

Mr. Charles H. Faulkner Houghton International Inc. Valley Forge, Pennsylvania

Dr. Kiyoshi Funatani, FASM Parkerizing Company, Ltd. Nagoya, Japan

Mr. Robert J. Gaster Deere & Company Moline, Illinois

Prof. Tatsuo Inoue, FASM Kyoto University Sakyo-ku, Kyoto, Japan

Mr. Larry Jarvis Tenaxol Inc. Milwaukee, Wisconsin

Prof. Hong Liang University of Alaska Fairbanks Fairbanks, Alaska

Prof. Jian Lu Universite de Technologie de Troyes Troyes, France

Mr. D. Scott MacKenzie The Boeing Company St. Louis, Missouri

Ms. Sandy J. Midea Metal 1 Broadview Heights, Ohio

Prof. Philip G. Nash Illinois Institute of Technology Chicago, Illinois **Dr. Valentin Nemkov** Center for Induction Technology, Inc. Auburn Hills, Michigan

Mr. Carmen Paponetti HI TecMetal Group, Inc.

Cleveland, Ohio

Mr. George Pfaffmann TOCCO, Inc. Madison Heights, Michigan

Mr. Daie A. Poteet, Jr. Innovative Metallurgical Technology Pewaukee, Wisconsin

Dr. Sanjay Shrivastava Edwards Lifesciences Irvine, California

Mr. Fred R. Specht Ajax Magnethermic Corp. Warren, Ohio

Mr. William D. Stofey American Ultra Specialties, Inc. Hudson, Ohio

Dr. John Stringer Electric Power Research Institute Palo Alto, California

Mr. Jack Titus Holcroft, Inc. Livonia, Michigan

Dr. George E. Totten, FASM Union Carbide Corporation Tarrytown, New York

Prof. Jorge Carlos Vega Catholic University of Cordoba Guadalajara, Argentina

Dr. Lin Xie SolidWorks Inc. Concord, Massachusetts

Prof. Kewei Xu Xi'an Jiatong University Xi'an, China

Preface

The 2000 annual ASM Heat Treating Society Conference and Exposition was held in St. Louis, Missouri. A number of excellent international symposia were held including: Advances in Surface Engineering: An International Symposium in Honor of Professor Tom Bell Professor Jerome B. Cohen Symposium on Residual Stresses in the Heat Treatment Industry, Symposium on Retained Austenite, Symposium on Quenching and Distortion, and others. Taken together, these symposia provided the ASM-HTS membership with an outstanding, state-of-the-art overview of the most vital technologies of importance to the heat treating industry today.

These proceedings are a product of the Annual Heat Treating Society Conference. Submission of manuscripts was not a requirement for speaking at the conference; consequently, there are some speakers who chose not to prepare a manuscript. Many of the speakers at the conference conscientiously agreed to spend the time and effort necessary to prepare these manuscripts. We certainly wish to express our appreciation to these authors.

We also thank you, the attendees, for participating in this event. You are the most important part of this activity. Conferences are not only important for the information exchanged, but even more importantly, they are an absolutely vital part of professional growth through the formation of an international network of colleagues.

For planning purposes, please note that the 2001 Annual Conference and Exposition will be held 5 to 8 November 2001, in Indianapolis, Indiana, USA.

Kiyoshi Funatani, Ph.D., FASM Parkerizing Company Ltd. Nagoya, Japan Co-Chair

George E. Totten

Union Carbide Corporation Tarrytown, New York, USA Co-Chair

Contents

Advances in Surface Engineering: An International Symposium in Honor of Professor Tom Bell

Tom Bell—The Early Days
The International Impact of Bell's Career3 <i>R.B. Wood, International Federation for Heat Treating and Surface Engineering, Guilford, United</i> <i>Kingdom</i>
Tom Bell's Impact on Heat Treatment in Sweden
Pl ³ Processing: OES Diagnostics and Rare Earths
A Kinetic Study of Low Temperature Plasma Carburizing of Austenitic Stainless Steels
Published Papers 25 T. Bell, The University of Birmingham, Birmingham, United Kingdom
Advanced Hard Coatings—Their Response to Aggressive Wear Environments
The Use of Controlled Post Heat Treatment Cleaning and Peening to Enhance the Fatigue Strength and Reliability of Case Carburized Gears
Effect of Alloying Elements and Carbo-Nitriding on Resistance to Softening during Tempering and Contact Fatigue Strength of Chromium-Containing Steels
Characterization of Retained Austenite in Case Carburized Gears and Its Influence on Fatigue Performance
Using Computer Simulation to Improve a Carburization Process
Predicting the Heat Treat Response of a Carburized Helical Gear

The Mechanical Properties of Hard Coatings—Experimental and Simulation Results
V. Weihnacht, Institute of Solid State, Physics, and Materials Research, Dresden, Germany
The Use of Fluidised Bed Reactors for Chemical Vapour Deposition Thermochemical and Thermoreactive Diffusion Treatments on Ferrous and Non Ferrous Alloys
Characteristics of Residual Stresses in Ti-N Films Coated by Plasma Enhanced Chemical Vapor Deposition
Effect of Chlorine Ion Implantation on CrN Coating in Tribology
Residual Stresses and Distortion Due to the Heat Treatment Process—Simulation and Experiment
Prediction of the Processing Window and Hardenability for Austempered Ductile Iron
Metallo-Thermo-Mechanical Simulation of Laser-Quenching Process of Some Steels
Recent Trends in Surface Modification of Light Metals
Surface Modification of Titanium Alloys by High-Frequency Induction Thermochemical Processing (INTERPROCESS)™
S.M. Gugel, Sanova-Polytech, Inc., New York, New York
Superplasticity, Superplastic Forming and Diffusion Bonding of Aluminum Alloys
Theory and Technology of Surface Alloying of Iron, Aluminum, Copper and Titanium with Laser Heating Y. Kogan, AR Company, Tarzana, California
Current Status and Trends in Duplex Surface Engineering of Titanium Alloys
Austenitization and Carbide Dissolution of High Speed Tool Steel AlSI-M2 in Short Time Heating

Monitoring and Controlling the Temperature in a High Power Direct Diode Laser Surface Hardening Application
C.M. Cook, J.M. Haake, Nuvonyx, Inc., Bridgeton, Missouri
Low Temperature Carburizing of Austenitic Steels192
F.T. Hoffmann, D. Günther, M. Jung, P. Magr, IWT, Bremen, Germany
A Few Remarks on Plasma Nitriding Behavior of Austenitic and Martensitic Stainless Steels
S. Jánosi, Z. Kolozsvary, V. Sándor, A. Rusu, S.C. Plasmaterm S.A., Tg-Mures, Romania
Modeling and Control of Nitride Layer Growth Kinetics on the Nitralloy 135M Alloy
Structure and Properties of Plasma Nitrided Austenitic Stainless Steel
The Effect of Profile of Residual Stresses and Hardness on Fatigue of Nitrided Layers
Graded Hardness Design in the Surface Modified Steels by Plasma Nitriding
Effect of Initial Microstructure and Austenitising Conditions on the Impact Properties of an Austempered Ductile Iron
M. Grech, M.H.A. Alaalom, University of Malta, Msida, Malta
Novel Thermochemical Diffusion Processes in Vacuum Furnaces for Steel Components
Surface Oxides and Bending Fatigue in Gas-Carburized SAE 4320 Steels
G. Krauss, D.K. Matlock, Colorado School of Mines, Golden, Colorado
Shot Peening and Stress Peening of AISI 4140 at Elevated Temperatures—Effects on Fatigue Strength and Stability of Residual Stresses
Dual Phase in Commercial Grade Steels Prepared by Nitriding
Heat Treating and Mechanical Properties of 5Cr8Mo2WSiV and Its Application to Wood-Chip Cutting Knives

Laser Quenching of Ultra-Thin Steel Wire—Simulation and Experiments	278
A. Sakuma, T. Matsumoto, M. Kagawa, Yamaguchi University, Ube, Yamaguchi, Japan	
Y. Tokunaga, Marubeni Fine Steel Company, Ltd., Onoda, Japan	
Adventes in Manual Matellum, Effects of the Unit Strategies and Confess Engineering	
Advances in Vacuum Metallurgy—Effects on the Heat Treatment and Surface Engineering of Metals	204
	204
A.S. Korhonen, E. Harju, Helsinki University of Technology, Espoo, Finland	
Advanced Process and Furnace Technology for Case Hardening Using Low-Pressure and	
Plasma Carburizing Combined with Gas Quenching	200
M. Lohrmann, W. Gräfen, Ipsen International GmbH, Kleve, Germany	
Atmosphere for High Quality Tube Annealing	296
T. Holm, S. Wiberg, R. Andersson, AGA AB, Lidingo, Sweden	
C. Moran, AGA Gas, Inc., Cleveland, Ohio	
High-Efficiency Atmospheric Carburizing	301
L. Lefèvre, D. Domergue, M. Buffin, Air Liquide, Les Loges-en-Josas, France	
An Update on Low Pressure Vacuum Carburizing Techniques and Experiences	306
D.H. Herring, Ipsen International, Inc., Rockford, Illinois	
In-Line Hardening with Magnetic-Field Heating	316
S. Segerberg, IVF, Molndal, Sweden	
P.E. Nàslund, Magnetteknik International, Forsheda, Sweden	
Development and Application of Induction Hardening Simulation for Processing	
Production Components	321
A.V. Reddy, J. Cai, CDI Corporation, Peoria, Illinois	
L. Chuzhoy, Caterpillar, Inc., Peoria, Illinois	
D.L. Lowry, Caterpillar, Inc., Aurora, Illinois	
M.G. Olmstead, B.G. Luebbers, Caterpillar, Inc., Decatur, Illinois	
Induction Thermochemical Dressesing (INTERDROGECO) Min Liquid Active Media (LAM)	
Induction Thermochemical Processing (INTERPROCESS)™ in Liquid Active Media (LAM)—	
A New Direction in Heat Treating Technology for 21st Century	327
S.M. Gugel, Sanova-Polytech, Inc., New York, New York	
Surface Engineering of Iron-Base Alloys by High-Frequency Induction Carburizing	
(INCARB)™	338
S.M. Gugel, Sanova-Polytech, Inc., New York, New York	
Wear Pahavier on the Nitrided Charles	
Wear Behavior on the Nitrided Steels	347
N. Granito, T. Aizawa, The University of Tokyo, Tokyo, Japan	
H. Kuwahara, Research Institute for Applied Sciences, Kyoto, Japan	
Abrasive Wear Resistance of a Fe Based Hard Coating Containing Cr and Nb	353
L.C.F. Canale, O.R. Crnkovic, A.F. Farah, C. Ferrarini, EESC—Univeridade de São Paulo,	
São Paulo, Brazil	
Wear and Fretting Fatigue Behavior of Plasma Nitrided Martensitic Stainless Steel	
L.E. Pereira, W.W. Bose, L.C. Casteletti, R.M.M. Riofano, D. Spinelli, University of São Paulo,	
São Carlos, Brazil	

Improvement of Tribological Behavior in Thin Hard Coatings by Chlorine Ion Implantation	6
Effect of Heat Treatment on the Low-Cycle Fatigue Strength of Aluminum Alloy 1420	3
Professor Jerome B. Cohen Memorial Symposium on Residual Stresses in the Heat Treatment Industry	
Introduction to the Prestress Engineering Approach	2
Residual Stress Induced by Heat Treatment and Thermochemical Treatment	2
 Sub-Grain Measurement of Stress with a 3-D X-Ray Microscope	2
Residual Stress Measurement with Two-Dimensional Diffraction	8
The Influence of Residual Stress on Fatigue Strength of Carburized Gears	8
The Effect of Cold Work on the Thermal Stability of Residual Compression in Surface Enhanced IN718	26
Residual Stresses in Green Bodies of Steel Powder and Their Relaxation during	
Heat Treatment43 P. Luukkonen, T. Ericsson, Linköping University, Linköping, Sweden	15
Simulation and Experimental Verification of Residual Stresses and Distortion during Quenching of Steel	11
M. Narazaki, Utsunomiya University, Utsunomiya, Japan	
Three Types of Intensive Water Quenching and Their Future Applications	8
Effect of Uneven Residual Stresses on Dimensional Changes and Variations of Through Hardening Bearing Steel Rings	55

Improvement in Ductility by Controlling Grain Boundary Structures in High Purity Chromium
M. Morinaga, Y. Murata, T. Maruta, T. Kanamori, Nagoya University, Nagoya, Japan
Y. Harada, Toyohashi University of Technology, Toyohashi, Japan
M. Fujine, Japan Ultra-high Temperature Materials Research Institute, Tajimi, Japan Y. Matsumoto, Oita National College of Technology, Oita, Japan
1. Walsunolo, Olla Nalional College of Teornology, Olla, odpan
Kinetic Study of the Tetragonal-to-Monoclinic Phase Transformation of Zirconia-Yttria Alloys
M. Hayakawa, L. Wang, H. Tottori, Tottori University, Koyama, Tottori, Japan
Variations in Hardness Values and Diameter Change in 1018 and 4340 Steel Jominy Bars
Retained Austenite Program
The Use of Retained Austenite in the Study of Phase Transformations
Observation of Retained Austenite by Electron Backscatter Diffraction in Austempered
Ductile Cast Iron (ADI)
Influence of the Austenite Matrix Microstructure on the Phase Transformations during Austempering of Ductile Iron
Retained Austenite in Martensitic Steels with 15% Cr and Carbon, Nitrogen or Both
Instrumented Charpy Impact Studies of Dynamic Crack Propagation in Martensite- Retained Austenite Microstructures509
S.H. Magner, W.N. Weins, University of Nebraska, Lincoln, Nebraska
Interaction of Solute Atoms in Austenite
L.B. Magalas, University of Mining and Metallurgy, Kraków, Poland
Characterization of the Substructure of Retained Austenite by X-Ray Diffraction
Effect of Retained Austenite on Short Fatigue Cracks in Austempered Ductile Cast Iron (ADI)
Mechanical Stabilization of Retained Austenite in TRIP-Assisted Multiphase Steels

The Significance of Retained Austenite for the Improvement of the Mechanical Properties of TRIP-Assisted Multiphase Steels
Hydrogen Trapping and Cracking Susceptibility with Different Restraint Stress Severity in Retained Austenite of High Strength Steel Welds
Role of the Retained Austenite on the Mechanical Properties of 13Cr-4NiMo Weld Metals
Retained Austenite and Tooling Failure Case Studies
Cryogenics: Applications in the Agricultural Field
Thermal and Mechanical Stability of Austenite in High Mn ADI
Stability and Transformations of Retained Austenite in Ductile and Vermicular Austempered Cast Irons
Prediction of Lifetime for an ADI
Effects of the Ferrite around Graphite on Ductility of Austempered Ductile Iron
The Design, Selection and Processing of ADI Components for Industrial Applications
The Effects of Heat Treatment on the Hydrogen Assisted Cracking Susceptibility of Case Hardened Fasteners
The Influence of Hardening Parameters on Retained Austenite Fraction in the Structure of Case Hardened Layers Created on Constructional Steels
Progress in Achieving the ASM-HTS/MTI Vision 2020
Looded Europee Temperature Madeling and Analysis

Q. Lu, C. Bai, YK. Rong, Worcester Polytechnic Institute, Worcester, Massachusetts	35
a. 20, 0. Dai, 1. N. Hong, Wordester Polytechnic Institute, Wordester, Massachusetts	

Prediction of Heat Treatment Effects Using Computational Thermodynamic and	
Kinetic Models	
S.S. Babu, J.M. Vitek, S.A. David, Oak Ridge National Laboratory, Oak Ridge, Tennessee	

Quenching and Distortion Control

The Application of Dynamic Measurement to Exploration of Cooling Behavior of Steel upon Quenching
X. Luo, J. Li, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People's Republic of China
Investigation of Regimes of Die Quenching in High Concentration Aqueous Polymer Solutions
N.I. Kobasko, W.S. Morhuniuk, V.V. Dobrivecher, Institute of the National Academy of Sciences, Kiev, Ukraine
G.E. Totten, Union Carbide Corporation, Tarrytown, New York
A Comparison on Cooling Curve Analysis Using Inc-Phatran and WinProbe
Experimental and Numerical Analysis of Cooling Curves during Quenching of Small Probes
Japan G.E. Totten, Union Carbide Corporation, Tarrytown, New York
Dimensional Changes during Heat Treating of an Automotive 319 Alloy
Improvement of Carburized and Quenched Gear Distortion–Computer Simulation and Experimental Validation
Calculation and Measurement of the Workpiece's Surface Temperature during Quenching
Standard for Testing FE-Simulations of Quenching (STA-FE-SIM)
Numerical Simulation of Heat Treatment and Its Use in Prevention of Quench Cracks
Prediction of Quench Distortion on Steel Shaft with Keyway by Computer Simulation

The Influence of Quench Condition on Distortion of Oil Quenching E. Nakamura, Idemitsu Kosan Company, Ltd., Tokyo, Japan Y. Hayashi, Apollo America Company, Detroit, Michigan	713
Estimation of End-Quench Heat Transfer Coefficients Using an Inverse Heat Transfer Analysis B. Hernández-Morales, A. Ingalls-Cruz, J.A. Barrera-Godínez, Universidade Nacional Autónoma de México, Distrito Federal, Mexico City, Mexico R. Colás, Universidad Autónoma de Nuevo León, Monterrey, Nuevo Leon, Mexico	719
Physics and Technology of Quenching in Fluids—Part I: Physics of Quenching H.M. Tensi, Technical University Munich, München, Germany G.E. Totten, Union Carbide Corporation, Tarrytown, New York T. Kunzel, Künzel Ludwig Nagelfabrik, Arzberg, Germany	727
Physics and Technology of Quenching in Fluids—Part II: Technology of Quenching H.M. Tensi, Technical University Munich, München, Germany G.E. Totten, Union Carbide Corporation, Tarrytown, New York T. Kunzel, Künzel Ludwig Nagelfabrik, Arzberg, Germany	731
Computer Prediction and Evaluation of Inverse Quench-Hardening of Steel K. Arimoto, D. Huang, D. Lambert, W.T. Wu, Scientific Forming Technologies Corporation, Columbus, Ohio	737
Modelling the Cooling of a Gas Quenched Gear P.F. Stratton, BOC Gases, Sheffield, South Yorkshire, United Kingdom D. Ho, BOC Group Technical Centre, Murray Hill, New Jersey	747
Material Database for Simulation of Metallo-Thermo-Mechanical Field T. Inoue, Kyoto University, Kyoto, Japan K. Okamura, Sumitomo Metal Industries, Ltd., Amagasaki, Japan	753
Effect of Materials on the Result of Metallo-Thermo-Mechanical Simulation of Quenched Japanese Swords T. Inoue, T. Uehara, T. Gotoh, Kyoto University, Kyoto, Japan	761
The Effect of Various Process Parameters on the Residual Stresses and Distortion in an L-Shaped Part X. Ling, H. Cherukuri, University of North Carolina, Charlotte, North Carolina	768
Practical Application of Intensive Quenching Process for Steel Parts M.A. Aronov, N.I. Kobasko, J.A. Powell, IQ Technologies, Inc., Akron, Ohio	778
Evaluation of Heat Transfer Coefficients in Water Spray Quenching Systems M.S. Hamed, CAN-ENG Furnaces, Niagara Falls, Ontario, Canada	785
High Pressure Gas Quenching Typical Oil Hardening Grades of Steel R. Hill, Jr., P.M. DeHennis, Solar Atmospheres, Inc., Souderton, Pennsylvania	791
Aerodynamic Furnaces: Heat Generation and Heat Transfer Principles A. V. Sverdlin, A. Ness, Bradley University, Peoria, Illinois	801

xiii

Quenchants and Quenchant Technology: Theory to Practice

Aqueous Polymer Quenchants: How Do They Work and What Are The Differences? L.M. Jarvis, Tenaxol, Inc., Milwaukee, Wisconsin G.E. Totten, G.M. Webster, Union Carbide Corporation, Tarrytown, New York	807
Oil Quenchants—A Guide to Proper Selection R. Brennan, Houghton International, Inc., Valley Forge, Pennsylvania	816
Selection, Operation, and Maintenance of Quenching Salts G.P. Dubal, Heatbath/Park Metallurgical Corporation, Detroit, Michigan	821
Effect of Boiling Range of Mineral Base Stocks on Quenching of 0.45%C Carbon Steel H. Yokota, H. Hoshino, S. Satoh, R. Kanai, Nippon Mitsubishi Oil Corporation, Yokoham, Japan	827
The Influence of Additives on Cooling Process of Mineral Quench Oil S. Asada, Nippon Grease Company, Ltd., Kobe, Japan K. Fukuhara, Nippon Grease Company, Ltd., Osaka, Japan	833
Cooling Curve Analysis of Polymer Quenchants: An Integrated Approach to Quenchant Selection and Bath Maintenance L.M. Jarvis, Tenaxol, Inc., Milwaukee, Wisconsin G.E. Totten, G.M. Webster, Union Carbide Corporation, Tarrytown, New York D.G. Hoffman, Metallurgical Services, Inc., Maywood, Illinois	839
Brazilian Quenching Oils: Classification of Quench Severity L. Canale, J.E. Ruggieri, O.R. Crnkovic, University of São Paulo, São Paulo, Brazil G.E. Totten, Union Carbide Corporation, Tarrytown, New York	847
Development of a Method to Evaluate Commercial Quenches A.V. Reddy, CDI Corporation, Peoria, Illinois D.A. Akers, L. Chuzhoy, M.A. Pershing, R.A. Woldow, Caterpillar, Inc., Peoria, Illinois	854
Induction Processing Program	
Specifying Equipment for Induction Heating Projects: Basics of Surface Hardening E.F. Kominars, D.J. Williams, Welduction Corporation, Novi, Michigan	858
Gear Heat Treatment by Induction V.I. Rudnev, D. Loveless, B. Marshall, Inductoheat, Inc., Madison Heights, Michigan	862
Intricacies of Induction Tempering for Automotive Industry V.I. Rudnev, D. Loveless, J. Murray, Inductoheat, Inc., Madison Heights, Michigan R. Escobedo, Ingenieros Consúltores, Queretaro, Mexico	872
Concentrators and YOU the Heat Treater T.J. Learman, ALPHA-1 Induction, Columbus, Ohio	879
Computer Simulation of Induction Heating Processes V.S. Nemkov, R.C. Goldstein, Centre for Induction Technology, Inc., Auburn Hills, Michigan	882

Prospective for Improved Magnetic Flux Control in the Induction Heating Technique R.T. Ruffini, Fluxtrol Manufacturing, Inc., Auburn Hills, Michigan V.S. Nemkov, R.C. Goldstein, Centre for Induction Technology, Inc., Auburn Hills, Michigan	889
Fahrenheit 451: Gear Up for Induction Hardening D.J. Williams, T.G. Boussie, E.F. Kominars, Welduction Corporation, Novi, Michigan896	896
Do We Outsource Induction Heat Treating? E.F. Kominars, D.J. Williams, Welduction Corporation, Novi, Michigan	901
High Power IGBT Induction Heating Power Supplies for the Metal Forging and Heat Treating Industries	905
K.D. Spain, Radyne Corporation, Milwaukee, Wisconsin S. Baskerville, Radyne Limited, Wokingham, United Kingdom	
Basics of Inductor Maintenance	915
Maintenance of Induction Heat Treating Systems F.R. Specht, Ajax Magnethermic Corporation, Warren, Ohio	917
Minimizing Electromagnetic Interference for Instrumentation in the Heat Treat Environment	924
E.S. Boltz, P.J. Barker, Marathon Sensors, Inc., Cincinnati, Ohio	
Automatic Verification of Inductive Hardening Using Eddy Current and Preventive Multi-Frequency Testing B. Buschur, ibg NDT Systems Corporation, Farmington Hills, Michigan	927
100% Automatic Hardness Inspection—Destructive and Non-Destructive J. Adams, K.J. Law Engineers, Inc., Novi, Michigan	937
Bi-Frequency Contour Hardening of Stainless Steel Gear for Aerospace Industry B. Pillin, A. Cucatto, SAET, Torino, Italy A. Mazzaferri, I. Caravello, F. Pacieri, UMBRA, Cuscinetti, Italy	940
Innovations in Selective Induction Profile Hardening of Gears G.D. Pfaffmann, TOCCO, Inc., Madison Heights, Michigan	945
Development of Quick Austempering Method by Means of Electric Current Direct Heating S. Tada, T. Abe, Tohoku National Industrial Research Institute, Sendai, Miyagi, Japan	958
New Generation of Induction Heating Machine for the Forging/Rolling Industry V.I. Rudnev, D. Loveless, K. Schweigert, M. Rugg, Inductoheat, Inc., Madison Heights, Michigan	964
Heat Treating Challenges in the Powder Metallurgy Industry	
Sintering of Warm-Compacted Prealloyed Steel Powders S. Cao, X. Qu, L. Zhang, J. Yi, Central South University of Technology, Changsha, Hunan, People's Republic of China	974

The Application of Plasma Technology to Powder Metallurgy	.979
L.A. Mendes, J.L.R. Muzart, A.N. Klein, A.R. de Souza, M.C. Fredel, P.A.P. Wendhausen, N. Back,	
V.J. Batista, Universidad Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil	

Sintering of Injection Molded Nano-Structured Tungsten Heavy Alloy Powder Compacts X. Qu, J. Fan, B. Huang, Central South University of Technology, Changsha, Hunan, People's Republic of China	985
The Heat Treatment of P/M Gears H. Ferguson, Metal Powder Products Company, Carmel, Indiana	989
Carburizing of Iron Based P/M Components T. Prucher, Burgess-Norton Mfg. Company, Geneva, Illinois	994
The Influence of HIP Design and Product Size on Sigma Phase Formation in a P/M Duplex Stainless Steel J.D. Hall, S.J. Mashl, Bodycote IMT, Andover, Massachusetts	999
Influence of Heat Treatment on Microstructures of Conventional and Sintered AiSi M-2 High Speed Steel	1006
F. Ambrosio, R.A. Nogueiro, O.R.S. Ribeiro, M.D.M. Nevei, L.F.C.P. de Limo, IPEN-Cidàde Universitária, São Paulo, Brazil	
Debinding of MIM Parts in a Plasma Reactor P.A.P. Wendhausen, M.C. Fredel, J.L.R. Muzart, A.R. de Souza, A.N. Klein, L.A. Mendes, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil W. Ristow, Jr., Grupo Lupatech, Caxias do Sul, Brazil	1010
How Argon Can Assist in Providing Clean Burn-Off of Lubricants and Binders K.H. Moyer, Magna-Tech P/M Labs, Cinnaminson, New Jersey W.R. Jones, Solar Atmospheres, Inc., Souderton, Pennsylvania	1017
Application of Recycled Metal Powder for Machine Parts Production A. Sverdlin, T. Ioumacheva, Bradley University, Peoria, Illinois A. Melnikov, K. Sarbaeva, A. Kirillova, Samara State Aerospace University, Russia	1024
Brazing Technology	
Interaction Phenomena at Refractory Metals/Ceramic Interfaces S.M. McDeavitt, Argonne National Laboratory, Argonne, Illinois G.W. Billings, Integrated Thermal Sciences, Inc., Santa Rosa, California J.E. Indacochea, University of Illinois at Chicago, Chicago, Illinois	1029
New Concepts for Joining Dissimilar Materials in Microsystems Technologies M. Aulerich, E. Lugscheider, Materials Science Institute, Aachen, Germany	1036
Braze Repair of Gas Turbine Components: Retrospective, Perspective, Prospective W.M. O'Neill, A. Kennedy, SIFCO, Cork, Ireland	1040
Erosion Resistant, Infiltration Brazed Tungsten Carbide Coatings Used in Fly Ash Conveyance Systems D.W. Bucholz, C.B. Harley, Conforma Clad, Inc., New Albany, Indiana	1046
Wide-Gap Brazing: A Practical Approach to a Difficult Process D. Fortuna, Sulzer Metco, Inc., Troy, Michigan	1051
Corrosion, Wear and Erosion Resistant Brazed Coatings of Tungsten Carbide D.W. Bucholz, G.A. Saltzman, Conforma Clad, Inc., New Albany, Indiana	1055

Laser Consolidation of IN-738 Alloy for Repairing Cast IN-738 Gas Turbine Blades L. Xue, J.Y. Chen, M.U. Islam, National Research Council Canada, London, Ontario, Canada J. Pritchard, D. Manente, S. Rush, Vac Aero International, Inc., Oakville, Ontario, Canada	1063
Furnace Brazing of Ferrous Powder Metal Components W.L. Kovacich, Caterpillar, Inc., Rockwood, Tennessee	1072
Temperature Profiling of Brazing Furnaces: Problems, Pitfalls, and Solutions D. Plester, Datapaq, Inc., Cambridge, United Kingdom	1075
Vacuum Brazing Large Components M.J. Drakeley, C. Amenheuser, Solar Atmospheres, Inc., Souderton, Pennsylvania	1079
Brazing High Density Heat Exchangers and Cold Plates in Batch Vacuum Aluminum	
Brazing Furnaces W.B. Mitten, Jr., Ipsen International, Rockford, Illinois	.1081
Closing the Quality Loop with Dispensable Fluxes	1089
K.S. Allen, Turbo Braze Corporation, Union, New Jersey	
Aluminum Processing	
Studying the Quench Sensitivity of Cast Al Alloys J.W. Newkirk, S. Mehta, University of Missouri-Rolla, Rolla, Missouri	. 1094
The Effect of Heat Treating on the Precipitation Response and Microstructure of an Aluminum-Lithium-Zirconium Alloy J.M. Fragomeni, The University of Detroit, Detroit, Michigan B.M. Hillberry, Purdue University, West Lafayette, Indiana	1101
Modelling Al₃Zr Dispersoid Formation in 7xxx Series Aluminum Alloys J.D. Robson, P.B. Prangnell, Manchester Materials Science Centre, Manchester, United Kingdom	. 1110
Residual Stresses, Distortion and Heat Transfer Coefficients of 7075 Aluminum Alloy Probes Quenched in Water and Polyalkylene Glycol Solutions G. Sánchez-Sarmiento, D.M. Coslia, C. Jouglard, Universidad de Buenos Aires, Buenos Aires, Argentina	.1118
G.E. Totten, G.M. Webster, Union Carbide Corporation, Tarrytown, New York J. Vega, SUDOSILO S.A., Heat Treatments, Córdoba, Argentina	
Application of Inverse Method to Determine Heat Transfer Coefficients for Post-Extrusion Spray Quenching of Aluminum Alloys	.1125
PC. Chen, D.A. Kaminski, R.W. Messler, Jr., Rensselaer Polytechnic Institute, Troy, New York JR. Shie, General Electric Company, Schenectady, New York	
Precision Local Laser Heat Treatment for Information Input J. Takács, T. Markovits, R. Keszte, Budapest University of Technology and Economics, Budapest, Hungary	. 1132
G. Posgay, P. Molnár, Metalelektro, Ltd., Budapest, Hungary J. Béli, MAV KFV Ltd., Budapest, Hungary	

AMS 2750

Complying with AMS 2750 Pyrometry Standard
Carburizing Technology
The Influence of Titanium on Grain Size in High-Temperature Carburized Steels
Microstructure and Fatigue Resistance of Carburized Steels
Cleaning Equipment and Processes
Cleaning Equipment and Processes Pre and Post Heat Treating
Variables and Guidelines for Working with Cleaners and Cleaning Equipment
Furnace and Oven Equipment Technologies
A New Generation of Adaptive Supervisory Control and Monitoring System for Sintering/
Heat-Treating Furnaces
H.K. Nandi, A. Casagranda, CompAS Controls, Inc., Indiana, Pennsylvania
H.K. Nandi, A. Casagranda, CompAS Controls, Inc., Indiana, Pennsylvania K. Frey, Innovative Sintered Metals, Inc., St. Marys, Pennsylvania Basic Oven Design for Heat Treating
 H.K. Nandi, A. Casagranda, CompAS Controls, Inc., Indiana, Pennsylvania K. Frey, Innovative Sintered Metals, Inc., St. Marys, Pennsylvania Basic Oven Design for Heat Treating